1.5 BASIC DISCRETE-TIME SIGNALS

Here we consider some simple, standard discrete-time signals.

1.5.1 Unit Step Sequence

Like the continuous-time unit step, we define the unit step sequence u[n] as

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$
 (1.42)

As shown in Figure 1.24, u[n] is a sequence of 1s starting at the origin. Notice that u[n] is defined at n = 0 unlike u(t), which is not defined at t = 0.

1.5.2 Unit Impulse Sequence

In discrete time, we define unit impulse sequence as

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$
(1.43)

FIGURE 1.24 The unit step sequence.

FIGURE 1.25 The unit impulse sequence.

TABLE 1.2

Properties of the Unit Impulse Sequence

 $1.\ x[n]\delta[n] = x[0]\delta[n]$

 $2.\ x[n]\delta[n-k] = x[k]\delta[n-k]$

3. $\delta[n] = u[n] - u[n-1]$

4.
$$u[n] = \sum_{k=-\infty}^{n} \delta[k]$$

5.
$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

This is illustrated in Figure 1.25. Notice that we do not have difficulties in defining $\delta[n]$ unlike $\delta(t)$. Some properties of the unit impulse sequence are listed in Table 1.2.

1.5.3 UNIT RAMP SEQUENCE

The unit ramp sequence is defined as

$$r[n] = \begin{cases} n, & n \ge 0 \\ 0, & n < 0 \end{cases}$$
 (1.44)

The sequence is shown in Figure 1.26. The relationships between unit impulse, unit step, and unit ramp sequences are

$$\delta[n] = u[n] - u[n-1] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$
 (1.45)

$$u[n] = \sum_{m = -\infty}^{n} \delta[m] \tag{1.46}$$

FIGURE 1.26 The unit ramp sequence.

$$u[n] = r[n+1] - r[n] \tag{1.47}$$

$$r[n] = \sum_{m=-\infty}^{n-1} u[m] \tag{1.48}$$

1.5.4 SINUSOIDAL SEQUENCE

The sinusoidal sequence or a discrete-time sinusoid is given by

$$x[n] = A\cos\left(\frac{2\pi n}{N} + \theta\right) = \text{Re}\left[Ae^{j(2\pi n/N + \theta)}\right]$$
(1.49)

where

A is a positive real number and is the amplitude of the sequence

N is the period

 θ is the phase

n is an integer

A typical sinusoidal sequence for A = 1, N = 12, and $\theta = 0$ is shown in Figure 1.27.

FIGURE 1.27 A discrete-time sinusoidal sequence, $x[n] = \cos(\pi n/6)$.

1.5.5 EXPONENTIAL SEQUENCE

If we sample a continuous-time exponential function $x(t) = Ae^{-at}$ with sampling period T, we obtain the sequence $x[n] = Ae^{-anT} = A\alpha^n$, with $\alpha = e^{-aT}$. Thus, the exponential sequence is given by

$$x[n] = A\alpha^n \tag{1.50}$$

where

A and α are generally complex numbers n is an integer

A typical discrete-time exponential sequence is shown in Figure 1.28. For the signal shown in Figure 1.28, both A and α are real numbers.

Example 1.7

If
$$r[n] = nu[n] = \begin{cases} n, & n \ge 0 \\ 0, & n < 0 \end{cases}$$
, Find $y[n] = 2r[1-n]$

Solution

To obtain y[n], we replace every n in r[n] with -n + 1.

$$y[n] = 2r[-n+1] = 2(-n+1)u[-n+1] = \begin{cases} -2n+2, & -n+1 \ge 0 \\ 0, & -n+1 < 0 \end{cases}$$
$$= \begin{cases} -2n+2, & n \le 1 \\ 0, & n > 1 \end{cases}$$

Practice Problem 1.7 Given r[n] in Example 1.7, obtain z[n] = r(n + 2).

Answer:
$$z[n] = \begin{cases} n+2, & n \ge -2 \\ 0, & n < -2 \end{cases}$$

FIGURE 1.28 A discrete-time exponential sequence, $\alpha > 1$.

FIGURE 1.29 For Example 1.8.

Example 1.8

Write down expressions for the sequences shown in Figure 1.29.

Solution

We use item 5 in Table 1.2 as a general way of expressing any discrete signal.

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

(a) For the discrete-time signal in Figure 1.29a,

$$x[n] = \delta(n) + 2\delta(n-3)$$

(b) Similarly, for y[n] in Figure 1.29b,

$$y[n] = \delta[n+2] + 2\delta[n+1] + 3\delta[n] + 2\delta[n-2]$$

Practice Problem 1.8 Write down expressions for the sequences shown in Figure 1.30.

Answer:

(a)
$$x[n] = \delta[n+1] + 2\delta[n-1]$$

(b)
$$y[n] = 2\delta[n+2] + \delta[n+1] + \delta[n-2] + 2\delta[n-2]$$

FIGURE 1.30 For Practice Problem 1.8.

Practice Problem 1.10 With the discrete-time signal shown in Figure 1.37, sketch each of the following signals: (a) x[-n], (b) x[n + 2], (c) x[n/2]

Answer: See Figure 1.39.

FIGURE 1.37 For Example 1.10.

FIGURE 1.38 For Example 1.10.

FIGURE 1.39 For Practice Problem 1.10.

1.31 Given the discrete-time signal in Figure 1.61, sketch the following signals:

(a)
$$y[n] = x[n-3]$$

(b)
$$z[n] = x[n] - x[n-1]$$

1.32 Consider the discrete-time signal in Figure 1.62. Sketch the following signals:

(a)
$$x[n]u[2-n]$$

(b)
$$x[n][u[n+1]-u[n]]$$

(c)
$$x[n]\delta[n-2]$$

FIGURE 1.61 For Problem 1.31.

FIGURE 1.62 For Problem 1.32.